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Abstract

Purpose — As the complexity of the multi-component products increases the quality of these products
becomes increasingly difficult to control throughout the supply chain. The first step to manufacturing
a quality product is to ensure that the product components from suppliers meet specifications. Product
quality can be controlled through sampling inspection of the components. The paper aims to discuss
these issues.

Design/methodology/approach — The model presented in this paper was developed to determine
the optimal sampling levels for incoming lots containing parts for production and assembly of multi-
component systems. The main objective of the model is to minimize the expected cost that is associated
with a nonconforming item reaching assembly.

Findings — In this research, the results showed that even with limited time available for inspection,
performing sampling inspection significantly reduced the expected cost of a nonconforming item
reaching assembly. The model, solved by the evolutionary algorithm, was able to provide a
meaningful, near optimal solution to the problem.

Originality/value — In this model the time available for inspection is limited, the distribution of
defects is assumed to follow the binomial distribution, and the distribution of accepting the lot with
defects follows the hypergeometric distribution. In addition, the inspection is considered to be accurate
and, if a nonconforming item is found in the inspected sample, the entire lot is rejected. An example is
given with real world data and the results are discussed as they relate to supply chain management
and quality.

Keywords Supply chain management, Cost optimization, Inspection optimization,

Quality engineering, Sampling inspection

Paper type Research paper

1. Introduction
The purpose of this research is to determine the optimal sampling inspection plan of
incoming lots. These lots contain a specific number of individual items for the
manufacturing and assembly of multi-component systems. These systems are common
in the automotive, aerospace, heavy equipment, off highway vehicle, and electronic
industry. The complexity and demand for these products have increased dramatically.
Therefore, the number of incoming lots and parts used in production has also increased
dramatically. Since the quality of the product corresponds to the durability, reliability,
and customer’s safety and satisfaction, quality controls are necessary to improve
the quality through the supply chain and in the final product. Competition in the
market and quality appreciation by consumers has driven manufacturers to pay
more attention to the quality of their products (Marttinen, 2002; Setijono and
Dahlgaard, 2008).

One method to improve the product quality is to perform sampling inspection on the
incoming lots from supplier products. Manufacturers also provide sampling results to
their suppliers as feedback on the quality of receiving lots, thus promoting healthy



consumer-supplier relationship (Hill, 1960; Robinson and McNicholl, 1990). In order to
do this, it is then necessary to determine the appropriate level of inspection. If the
company is not inspecting enough, there is a risk of a nonconforming item reaching the
assembly line and possibly remaining in the supply chain as a finished product.
This would result in a final product that does not meet the customer’s specifications
and possible penalty costs such as shipping charges, loss of faith in the product and
manufacturer, or even lawsuits. Since these costs affect the company, they increase the
cost of the final product and reduce the profit from the product. On the other hand,
if the company performs 100 percent inspection, the risk of nonconforming items
reaching assembly would be minimized. The cost associated with 100 percent
inspection (manpower, equipment, etc.) would, again, drive up the production cost of
the final product and even possibly delay production (Oppermann ef al, 2001).
Therefore, an optimal inspection strategy is needed in order to minimize the total cost
while providing a certain level of quality. In order to minimize the total cost, an optimal
trade-off between the appraisal cost, which is the cost that is generated from
performing quality inspection, and the prevention cost, which is the cost that is
generated from preventing the defects from reaching the consumer, must be
established to lower the failure cost and, therefore, the total cost (Keogh et al, 2000).

Companies typically follow some type of sampling inspection procedure in their
facilities. A common practice of companies is to follow the “trust the supplier” ideology
where only a few items in the first lot are inspected. If these items meet the
specifications, that lot and consecutive lots are sent to the assembly line without further
inspection. It should be also noted that some companies do not have the ability to
inspect certain features of the items in the lot, which forces them to trust the supplier.

This research considers sampling inspection optimization and provides a model
that determines the inspection levels. The research focusses on determining the
inspection levels that would minimize the expected total cost of nonconforming items in
the time available. The paper is organized as follows. Section 2 covers the literature
review. Section 3 proposes and describes the model and the solution approach. Section
4 covers the analysis and the results. Lastly, Section 5 discusses future work and
provides conclusions.

2. Literature review

2.1 Sampling inspection of lots

Research and publications on sampling inspection of lots increased during and after
Second World War. Demand for military products increased greatly and tolerance for
faulty equipment was low during this period. Since production increased dramatically,
unit-by-unit, or 100 percent, inspection was not practical. Therefore, quality control
shifted from unit-to-unit inspection to statistically controlled sampling inspection.
Various military standards schemes were created in order to control the quality of the
incoming lots (Champernowne, 1953; Barnard, 1954). Military standards first inspect a
large sample size to determine the distribution of defects. If the lots are found to meet
the specifications, the inspection on the consecutive lots is then relaxed.

Li et al. (2011) examined Military Standard MIL-STD-1916. This standard works
under “zero accept one reject” premises; meaning that if there is a nonconformance in
the sample of the population then the entire population is rejected. Lie ef al revised
MIL-STD-1916 by expanding the current standard from 11 to 18 groups of inspection in
order to separate the sampling plans from 100 percent inspection. Li et al
acknowledged that just because there are no nonconforming items in the sample it does
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not mean that the population meets conformance requirements, meaning that the lots
can still carry a risk of a defect reaching the final product.

The research of Champernowne (1953) focussed on the economic success of the
problem by using sampling inspection as a tool in the process. For the purpose of the
study Champernowne assumed that several variables in the problem are known:

(i) the average quality of the batches to be tested and the variation between batches of quality
about that average, (ii) the cost of inspection and its dependence on the amount of inspection
undertaken, and (iii) the cost involved by deciding wrongly to accept or wrongly to reject a
batch, and the way this cost depends on the quality of the batch.

Using this information, Champernowne developed an economical boundaries model
that uses sampling inspection results (number of effective and defective items) to
determine whether the lot should be accepted or rejected. Champernowne mainly
focussed on satisfying the economical aspect of the problem, meaning that as long as
the result is within the economical boundaries the lot would be accepted even if defects
were found in the sample. On the other hand, Barnard (1954) argued that the
information, which Champernowne assumes are given, are not readily available in the
real world. Barnard argued that assigning a distribution for defects is needed in order
to solve the problem. Barnard also argued that a considerable amount of information
for each lot is needed to make an optimal decision for the problem.

Hamaker (1958) described three different approaches to sampling inspection:
sampling tables, collecting data, and constructing inspection plans. Hamaker also
modeled a plan using economic theories where the research concluded that it might be
more economical not to inspect the lots with a small probability of nonconforming
items. While all the methods have been implemented in the real world, Hamaker
warned that the data collection and sampling tables might lead to over sampling while
using economic theories might not always be possible because certain factors might not
be obtainable. Hamaker then suggested that a sampling plan should be selected and
monitored for its performance and then later adjusted for the new data if needed.

2.2 Sampling inspection in multi-stage process systems (MSPS)

Research performed in this field has mainly focussed on the allocation of inspection
stations within MSPS. These inspection stations are supposed to catch the possible
defects that might be experienced during production. The solutions have mainly been
developed using dynamic programing or heuristic methods. The published research
has commonly considered the economical aspect of the problem, trading off the risk,
and cost of inspection.

Dynamic programming has widely been considered while searching for the problem
solution. It managed to break down the multi-stage problem into smaller, more
manageable problems, which are then easier to solve (Bellman, 1952, 1953, 1956;
Bellman et al,, 1953). Other researchers have expanded the problem considering among
others that only no inspection or 100 percent inspection is available (White, 1969),
imperfect inspection where inspection stations may label a nonconforming item
conforming and vice versa (Hurst, 1973; Eppen and Hurst, 1974), and statistically
controlled inspection (Oppermann ef al., 2001, 2003). Dynamic programming was able
to determine an optimal solution to the problem and it was very effective for MSPS with
a small number of stations. An increase in the number of stations in the MSPS dynamic
programming took longer than desired to find a solution. New methods, such as
heuristic methods, have been found for calculating solutions for the problem.



Heuristic methods such as evolutionary algorithms are popular methods in finding the
solution to the inspection stations allocation problem. Researchers have, again,
considered imperfect inspection (Taneja and Viswanadham, 1994), and economical trade-
offs (Van Volsem et al., 2007; Van Volsem, 2010). While providing a fairly quick solution,
heuristic methods are not guaranteeing optimal, but rather a close to optimal solution.

3. The model

Consider an assembly line that has M different parts coming in. These parts have
different lot sizes, defect rates, and repair costs if a defective item enters the assembly
line. They also have a specific time interval needed to inspect a single item. Incoming
mspection is performed on these parts in order to control the quality of the final
product. The problem facing management is to determine the appropriate inspection
sample size for each part considering the variability of risks associated with the M
parts and the limited resource of labor hours the assembly line can spend on inspection.
The problem can be modeled as a Nonlinear Integer Programming problem as follows:

Index sets:
I={1, 2,...,M} =index set for parts considered by inspections.

Parameters:

T = total labor hours available for inspection

1;=time needed to inspect a single item of part ¢

N; = total number of items in the lot for part 7 (lot size)

d; = probability of a defective item in the lot for part ¢ (defect rate)
C; = cost of a nonconforming item reaching assembly for part ¢

Variables:
D;=total number of defective items in lot ¢
n; =number of items to be inspected for part 7

Minimize:
M N
Z P(D))D;C;P(0|N;, D;,n;) o)
i=1 D=0
Subject to:
N .
P(D)) = ( D, ) di(1=d)™ " @
N;—D;
n;
P(O‘N,‘,Dl',i’li) = T (3)
n;
M
Z tin; < T (4)
i=1
0<n <N,,n's are integers ©)
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It is assumed that the parts that are in the lot can either pass (conforming items) or fail
inspection (nonconforming items). Since there are only two possible outcomes (pass,
fail), it is assumed that the probability of having D; number of defects of part 7 in the lot
follows the binomial distribution. Therefore, calculating the probability of having an
exact number of nonconforming items (P(D,)) in the lot is possible as long as the defect
rate and the lot size for part i are available. The cost of the exact number of
nonconforming items reaching assembly is calculated by multiplying the number
of defects in the lot with the cost of a nonconforming item reaching assembly for part
¢ (C). Using this cost and the probability of having a specific number of defects is
multiplied to obtain an expected cost of nonconformance for the specific number of
defects. In order to cover all the possible values of D; (0<D;<V;) and to calculate the
total expected cost of nonconforming items in the lot for part ¢, all possible outcomes are

summarized N P(D))D; C;). This also represents the total expected cost of
D=0

nonconformance for part 7 if there is no inspection performed and the lot is sent directly
to the assembly line.

With the inspection of a certain number of items (1), it is expected that the
probability of a nonconforming item reaching assembly for that particular part number
will be reduced. The number of defects found in the sample size that would be tolerated
is zero, meaning that if a nonconformance is found in the sample size the entire lot is
rejected. It is assumed that the inspection is performed without replacement. Since two
mutually exclusive categories (pass/fail) are considered, it is assumed that the
probability of accepting the lot with a defect follows the hypergeometric distribution
shown in Equation (3).

The sample size #; can be any number between zero and lot size N; (Equation (5)).
Also, n; must be an integer (Equation (5)). If the sample size is zero, then no inspection
performed. This means that the risk of accepting the lot with D; defects is large.
However, if the sample size is IV;, then 100 percent inspection is performed and the risk
of accepting the lot with D; defects is zero; however, the inspection cost would be high.
The decision variable is, therefore, the sample size, #;. With the increase of the sample
size, the probability of accepting the lot with D; defects decreases. Therefore, the bigger
the sample size 7, the smaller the expected cost of a nonconforming item reaching
assembly for a specific number of defects D;:

P(D;) D; C; P(0|N;, Dy, n;) ©6)

In order to find the total expected cost for the specific part with all possible values of D;,
the summation of these equations is needed:

N;
> " P(D)D; C; P(0|N;, Di, m;) @)
D=0

Finally, the research goal is to minimize the expected total cost of the nonconforming
items for all the parts M in the system as shown in the Equation (1).

Since the time for inspection (7) is limited and there are a large number of different
parts (M) with various lot sizes, 100 percent inspection is time consuming, expensive,
and unpractical. Each part ¢ has a specific time interval (#,) it takes the operator to
mspect one item of part z. Therefore, the time it takes to inspect sample size #;, for all



parts M, must be less than or equal to the total time available for the inspection, which
is the constraint show in Equation (4).

It is known from the problem statement and the objective that the purpose of the
model is to find an optimal sampling inspection plan that would minimize the expected
cost of a nonconforming item reaching the assembly line in the limited time available.
If the sample size #; is equal to zero then the probability of a lot with defectives being
accepted would be equal to one. This would then result in the maximum expected cost
of the nonconforming item. However, if inspection is performed and the sample size
increases then the probability of accepting the lot with D; defects decreases. The model,
therefore, provides a sample size #; for all parts M in the system.

4. Analysis and results

Since the time to calculate these inspection plans is limited and the size of the problem
1s usually large, it was decided to use an evolutionary algorithm (Ashlock, 2006) to
solve the problem. Industry is typically interested in a better solution than the one
they currently have and not the optimal solution, particularly if the solution is fast
and easy to obtain. In the testing phase Excel was used to program the model. The
model was built using the Solver program and it is solved using the evolutionary
algorithm built in Solver. The advantage of this algorithm is that it gives a fast
solution. However, the disadvantage of the algorithm is that the generated solution
might not be the optimal solution, but rather a near optimal solution. Another
disadvantage of the evolutionary algorithm is that it may show some inconsistencies
in generating the solutions.

The model was initially tested for two parts. The data used for the two-part problem
was provided by the automotive industry. The two parts in question are a tube and a
harness. The tube has a historic defect rate of 1.93 percent, lot size of 125, inspection
time of 30 minutes, and cost of nonconformance of $17. The harness has a historic
defect rate of 3.13 percent, lot size of 300, inspection time of five minutes, and cost of
nonconformance of $235. The time available is one workday of eight hours or 480
minutes and the wage for the inspectors was set to $40.

The small problem analysis was set up for the user to input following data: lot size
(V) for each part, defect rate (d;) for each part, time needed to inspect (£,) for each part,
cost of nonconformance reaching assembly (C;) for each part, time available for
inspection (7), and employee’s salary (Cs). All of the constraints were set up as the
model suggests and the program was set to determine the solution using the
evolutionary algorithm. While using an evolutionary algorithm it is expected to see
some inconsistencies in the results.

The results that were found were promising for the real world application. In the
two-part example, the expected cost of nonconformance was decreased by 83 percent
and the total cost was decreased by 63 percent as shown in Table L. In addition, the
defect rate was reduced with inspection as shown in Figure 1. The expected cost of

No inspection ($) With inspection ($) Change in cost ($) % change in cost

Cost of work force 320.00 320.00 0.00 0
Expected cost of N-C 1,019.03 172.34 846.69 83
Total cost 1,339.03 492.34 846.69 63
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Figure 1.

Change in defect rate
for the two-part
problem

Figure 2.

Change in expected
cost for the two-part
problem
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nonconformance also was reduced with inspection as shown in Figure 2. The cost of the
work force represents the cost of labor hours. For this research, the inspectors are paid
at a pre-specified rate regardless of whether they are inspecting incoming material or
they are idle. Therefore, it is a sunk cost and it does not affect the decision. The model
determines that the optimal sample size for the harness is 56 (44.8 percent of the lot size)
and that for the tube is six (2 percent of the lot size). After inspection is performed the
defect rate of the lot is 0.29 percent for the harness and 1.68 percent for the tube.

Change in Expected
Cost of Nonconformances
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The model was then tested for a 20-part problem. The data were randomly generated
where the defect rate had a range from 1 to 10 percent, lot size had a range from 10 to
500, time needed to inspect certain item ranged from 1 to 30 minutes, and the cost of a
nonconforming item ranged from $10 to $300 as shown in Table II. In order to compare
the 20-part problem to the two-part problem the time to inspect remained the same at
480 minutes.

Table III shows the output provided by the program. It calculates the defect rate
after inspection in order to see what type of risk the lot is still carrying as we calculated
the cost of nonconformance with and without inspection. It also provides the sample
size for inspection.

After running the program, the model came to a solution where the expected cost
of nonconformance decreased by 18 percent and the total cost (the expected cost of
nonconformance and the cost of labor) decreased by 18 percent as shown in Table IV.

As shown in Table IV, the expected cost of nonconformance reduced by the optimal
inspection is significantly greater than the cost of work force; therefore, performing
sampling inspection on the incoming lots is very cost-effective.

To demonstrate the affect of having greater inspection capacity, we examine
the 20-part numerical example again, but with 2,400 minutes of inspection time.
The model lowered the total expected cost of nonconformance by 68 percent and the
total cost by 65 percent (Table V). The changes in the defect rate and the expected

Inputs
Total time available (min) 2,400
Hourly wage = $40.00
Inspection time per ~ Defect cost per Defect rate for
piece 7 (min) piece i ($) Lot size ¢ part 7 (%)

Part number I; G N; d;

1 10 $86.00 450 8.00

2 5 $129.00 35 3.00

3 11 $121.00 165 7.00

4 3 $182.00 425 10.00

5 20 $60.00 100 8.00

6 10 $61.00 175 10.00

7 18 $40.00 350 2.00

8 3 $76.00 15 7.00

9 20 $111.00 60 1.00
10 16 $74.00 90 9.00
11 19 $182.00 120 4.00
12 23 $189.00 500 5.00
13 20 $28.00 100 7.00
14 3 $69.00 300 4.00
15 17 $67.00 465 5.00
16 8 $104.00 160 4.00
17 20 $45.00 120 6.00
18 3 $129.00 455 6.00
19 2 $82.00 255 10.00
20 17 $49.00 190 3.00
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Table III.

Outputs for a 20-part
problem with
available time of
2,400 minutes

Defect rate Change in
after Changein  Expected cost of Expected cost of  expected cost of
inspection defect nonconformance nonconformance nonconformance Inspection
(%) rate (%) without inspection (§) with inspection ($) (%) size (n;)
241 5.59 3,096.00 933.48 70 14
2.83 0.17 135.45 127,63 6 1
1.83 517 1,397.55 365.05 74 17
0.21 9.79 7,735.00 159.50 98 36
6.04 1.96 480.00 362.56 24 3
2.35 7.65 1,067.50 251.19 76 13
145 0.55 280.00 202.58 28 14
6.08 092 79.80 69.27 13 1
092 0.08 66.60 61.39 8 3
590 3.10 599.40 392.77 34 4
345 0.55 873.60 753.58 14 3
2.25 2.75 4,725.00 2,123.38 55 15
5.03 197 196.00 140.75 28 4
246 154 828.00 509.09 39 11
1.31 3.69 1,557.75 408.87 74 26
2.27 1.73 665.60 377.23 43 12
4.22 1.78 324.00 227.88 30 5
245 3.55 3,521.70 1,435.39 59 14
2.16 7.84 2,091.00 452.09 78 14
251 0.49 279.30 233.53 16 5
Expected total cost of Expected total cost
no inspection of a nonconforming
29,999.25 9,587.21

Table IV.
Comparison between
without and with
sampling inspections
(480 minutes)

No inspection ($) With inspection (§) Change in cost (§) % change in cost

Cost of work force 320.00 320.00 0.00 0
Expected cost of N-C 29,999.25 24,490.07 5,509.18 18
Total cost 30,319.25 24,810.07 5,509.18 18

Note: Comparison of costs with and without inspection for a 20-part problem with available time of
480 minutes

Table V.
Comparison between
without and with
sampling inspections
(2,400 minutes)

No inspection () With inspection ($) Change in cost (§) % Change in cost

Cost of work force 1,600.00 1,600.00 0.00 0
Expected cost of N-C 29,999.25 9,587.21 20,412.04 68
Total cost 31,599.25 11,187.21 20,412.04 65

Note: Comparison of costs with and without inspection for a 20-part problem with available time of
2,400 minutes

cost of nonconformance without inspection and after suggested inspection are also
shown in Figures 3 and 4, respectively. A comparison between Tables IV and V
shows that greater cost savings would be expected if the assembly adds additional
inspection capacity.
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5. Conclusions and future work

The proposed model has a potential of solving the problem if the necessary inputs are
available. In this research, the results showed that even with limited time available for
inspection, performing sampling inspection significantly reduced the expected cost of a
nonconforming item reaching assembly. The model was able to provide a meaningful
solution to the problem although not necessarily an optimal solution as expected from
using the evolutionary algorithm given that the algorithm provides a near optimal
solution. Programming the model in a different programming language might provide
a more consistent and more accurate solutions.

Future work includes developing a model that would not just address the number of
items that need to be inspected but also the specific characteristic of the item that is
proven to have a possible issue. This would increase the efficiency of inspection, which
means that operators could inspect more items if they know which particular
characteristic needs more attention.
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Figure 3.

Change in defect rate
for the 20-part
problem with
available time of
2,400 minutes

Figure 4.

Change in expected
cost of
nonconformance for
the 20-part with
available time of
2,400 minutes
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